Introduction

Neurological soft signs (NSS) are neurological abnormalities that can be identified by clinical examination using valid and reliable testing measures. They are referred to as ‘soft’ because they are not related to a localized pathological lesion and are not thought to be part of a well-defined neurological syndrome. Categories of NSS are varied but they are commonly grouped into three categories: integrative sensory functioning, motor coordination, and complex motor sequencing. Integrative sensory functioning can include deficits in bilateral extinction (difficulty perceiving stimuli when presented to both hemispheres simultaneously), impaired audio-visual integration, agraphaesthesia (inability to recognize by touch, letters and numbers drawn on the skin) and stereognosis (inability to identify an object by touch without visual input). Motor coordination involves general coordination, intention tremor, finger thumb opposition, balance and gait. Motor sequencing measures complex motor tasks, such as repetitive alternating hand positions, i.e. fist-edge-palm test where subjects place their hand in three different positions sequentially: a fist resting horizontally, a palm resting vertically, and a palm resting horizontally. Abnormalities in eye movements and developmental reflexes may also be apparent.

Instruments for measuring NSS include the Woods scale, the Condensed Neurological Examination (CNE), Heidelberg scale, Cambridge Neurological Inventory, Modified Quantified Neurological Scale (MQNS), and the Neurological Evaluation Scale (NES).

Method

We have included only systematic reviews (systematic literature search, detailed methodology with inclusion/exclusion criteria) published in full text, in English, from the year 2000 that report results separately for people with a diagnosis of schizophrenia, schizoaffective disorder, schizophreniform disorder or first episode schizophrenia. Reviews were identified by searching the databases MEDLINE, EMBASE, CINAHL, Current Contents, PsycINFO and the Cochrane library. Hand searching reference lists of identified reviews was also conducted. When multiple copies of reviews were found, only the most recent version was included. Reviews with pooled data are given priority for inclusion.

Review reporting assessment was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist that describes a preferred way to present a meta-analysis. Reviews were assigned a low, medium or high possibility of reporting bias depending on how many items were checked. For instance, a low possibility of bias would be assigned to reviews checking over 66% of items, a medium possibility between 33 and 66% and a high possibility would be given to reviews checking less than 33%. Reviews rated as having less than 50% of items checked have now been excluded from the library. The PRISMA flow diagram is a suggested way of providing information about studies included and excluded with reasons for exclusion. Where no flow diagram has been presented by individual reviews, but identified studies have been described in the text, reviews have been checked for this item. Note that early reviews may have been guided by less stringent reporting checklists than the PRISMA, and that some reviews may have been limited by journal guidelines.

Evidence was graded using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group approach where high quality evidence such as that gained from randomised controlled trials (RCTs) may be downgraded to moderate or low if review and study quality is limited, if there is inconsistency in results, indirect comparisons, imprecise or sparse data and high probability of reporting bias. It may also be downgraded if risks associated with the intervention or other matter under review are high. Conversely, low
Neurological soft signs

quality evidence such as that gained from observational studies may be upgraded if effect sizes are large, there is a dose dependent response or if results are reasonably consistent, precise and direct with low associated risks (see end of table for an explanation of these terms)\(^5\). The resulting table represents an objective summary of the available evidence, although the conclusions are solely the opinion of staff of NeuRA (Neuroscience Research Australia).

Results

We found seven systematic reviews that met our inclusion criteria\(^1\), \(^2\), \(^6\)-\(^10\).

- **Moderate quality evidence suggests** a large effect of increased NSS in people with schizophrenia compared to controls. Specific domains affected include motor coordination and sequencing, sensory integration, and disinhibition.
- **Moderate quality evidence suggests** medium-sized associations between increased NSS scores and increased symptom severity. Both people with remitting or chronic psychiatric symptoms show improvements in NSS over time, although people with remitting symptoms show the greatest improvement.
- **Moderate to high quality evidence suggests** medium-sized relationships between increased NSS scores and decreased cognitive performance (but not language function).
- **Moderate to high quality evidence suggests** medium to large effects of increased total NSS scores, motor coordination, motor sequencing, disinhibition, and sensory integration in people with schizophrenia compared to first-degree relatives.
- **Moderate to high quality evidence shows** medium to large effects of increased total NSS scores, motor coordination and sensory integration, but not motor sequencing, in relatives of people with schizophrenia compared to controls.
- **Moderate to low quality evidence suggests** NSS are present in people with first-episode psychosis at a higher rate than controls.
- **Moderate quality evidence suggests** that people with schizophrenia showed reduced activation of basal ganglia and inferior frontal cortex, and increased activation of superior temporal gyrus, which were associated with increased severity of NSS. They also showed reduced grey matter volume of the precentral and inferior frontal gyri and thalamus, and white matter volume of the middle temporal and cerebellum regions.
Neurological soft signs

Bachmann S, Degen C, Geider FJ, Schröder J

Neurological soft signs in the clinical course of schizophrenia: results of a meta-analysis

Frontiers in Psychiatry 2014; 5: Article 185
[View review abstract online]

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Changes in NSS scores over time in people with schizophrenia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of evidence</td>
<td>Moderate to low quality evidence (direct, large sample, unable to assess consistency or precision) suggests a medium-sized overall effect of improved NSS over time. People with remitting psychiatric symptoms show a greater improvement in NSS than people with chronic symptoms.</td>
</tr>
</tbody>
</table>

NSS scores

17 longitudinal studies, N = 787

A medium-sized, overall effect of reduced NSS scores over time. Patients with remitting psychiatric symptoms show a steeper decrease in NSS scores than people with a chronic illness course;

- Overall mean effect size: \(d = 0.53 \), CIs and p-values are not reported
- Remitting psychiatric symptoms: \(d = 0.81 \), CIs and p-values are not reported
- Chronic psychiatric symptoms: \(d = 0.15 \), CIs and p-values are not reported

Greater reduction in effect sizes was associated with increased length of follow-up (\(r = -0.64, p = 0.001 \)), but not with increased age (\(r = 0.28, p > 0.05 \)).

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>Unable to assess; no measure of consistency is reported.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>Unable to assess; no CIs are reported.</td>
</tr>
<tr>
<td>Directness of results</td>
<td>Direct</td>
</tr>
</tbody>
</table>

Chan RCK, Xu T, Heinrichs RW, Yu Y, Wang Y

Neurological Soft Signs in Schizophrenia: A Meta-analysis

Comparison

NSS scores in people with schizophrenia vs. controls.

Summary of evidence

Moderate quality evidence (precise, direct, large samples, inconsistent) suggests large effect sizes of increased NSS scores in people with schizophrenia compared to healthy controls. Specific domains affected include motor coordination and sequencing, sensory integration, and disinhibition. There are also medium-sized relationships between increased NSS scores and increased symptomatology. Moderate to high quality evidence (consistent) suggests medium-sized relationships between increased NSS scores and decreased cognitive performance.

NSS scores

Significant, large effects of higher NSS scores in people with schizophrenia compared to controls;
Total NSS score: 33 studies, N = 4,329, $d = 1.591$, 95%CI 1.377 to 1.805, $p < 0.05$, $Q = 277.093$, $p < 0.05$

Motor coordination: 24 studies, N = 3,436, $d = 0.977$, 95%CI 0.793 to 1.161, $p < 0.05$, $Q = 126.686$, $p < 0.05$

Complex motor sequencing: 15 studies, N = 1,722, $d = 0.795$, 95%CI 0.546 to 1.044, $p < 0.05$, $Q = 71.407$, $p < 0.05$

Sensory integration: 23 studies, N = 3,295, $d = 0.823$, 95%CI 0.652 to 0.994, $p < 0.05$, $Q = 104.487$, $p < 0.05$

Disinhibition: 8 studies, N = 1,620, $d = 0.970$, 95%CI 0.617 to 1.322, $p < 0.05$, $Q = 69.388$, $p < 0.05$

Cognitive variables

Significant, medium-sized correlations between increased total NSS score and poorer cognitive abilities (but not language function) in people with schizophrenia;
All cognitive abilities: 48 studies, N = 3,789, $r = -0.331$, 95%CI -0.362 to -0.299, $p < 0.05$, $Q = 54.972$, $p = NS$

Verbal memory: 4 studies, N = 383, $r = -0.305$, 95%CI -0.394 to -0.210, $p < 0.05$, $Q = 0.955$, $p = NS$

Nonverbal memory: 6 studies, N = 608, $r = -0.374$, 95%CI -0.485 to -0.252, $p < 0.05$, $Q = 13.851$, $p < 0.05$

Motor function: 4 studies, N = 360, $r = -0.299$, 95%CI -0.392 to -0.291, $p < 0.05$, $Q = 0.363$, $p = NS$

Attention: 8 studies, N = 579, $r = -0.292$, 95%CI -0.382 to -0.197, $p < 0.05$, $Q = 9.892$, $p = NS$

IQ: 6 studies, N = 580, $r = -0.336$, 95%CI -0.443 to -0.218, $p < 0.05$, $Q = 10.952$, $p = NS$
Spatial ability: 5 studies, N = 233, \(r = -0.268, 95\% \text{CI} -0.386 \text{ to } -0.141, p < 0.05, Q = 1.958, p = \text{NS} \)

Executive function: 10 studies, N = 641, \(r = -0.361, 95\% \text{CI} -0.428 \text{ to } -0.290, p < 0.05, Q = 8.974, p = \text{NS} \)

Language function: 4 studies, N = 344, \(r = -0.354, 95\% \text{CI} -0.257 \text{ to } 0.445, p > 0.05, Q = 2.597, p = \text{NS} \)

Clinical variables

Significant, medium-sized correlations between increased total NSS score and increased symptom severity in people with schizophrenia:

- Total symptom score: 11 studies, N = 696, \(r = 0.327, 95\% \text{CI} 0.213 \text{ to } 0.432, p < 0.05, Q = 23.341, p < 0.05 \)
- Negative symptoms: 15 studies, N = 758, \(r = 0.346, 95\% \text{CI} 0.260 \text{ to } 0.426, p < 0.05, Q = 20.728, p = \text{NS} \)
- Positive symptoms: 10 studies, N = 529, \(r = 0.192, 95\% \text{CI} 0.067 \text{ to } 0.312, p < 0.05, Q = 16.578, p = \text{NS} \)

Consistency in results

Inconsistent for all NSS scores, nonverbal memory, and total symptom scores

Precision in results

Precise apart from language function

Directness of results

Direct

Chan CK, Xu T, Heinrichs RW, Yu Y, Gong QY

Neurological soft signs in non-psychotic first-degree relatives of patients with schizophrenia: A systematic review and meta-analysis

Neuroscience and Biobehavioral Reviews 2010; 34: 889-896

View review abstract online

Comparison 1

NSS scores in people with schizophrenia vs. first-degree relatives of people with schizophrenia.

Summary of evidence

Moderate to high quality evidence (some inconsistencies, precise, direct, large samples) shows increased NSS scores in people with schizophrenia compared to first-degree relatives. Specific domains affected include motor coordination and sequencing, and disinhibition (large effects), and sensory
Neurological soft signs

<table>
<thead>
<tr>
<th>Integration (medium-sized effect).</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSS scores</td>
</tr>
</tbody>
</table>

Significant, medium to large effects of increased NSS scores in people with schizophrenia;

Overall score: 11 studies, $N = 1089$, $d = 0.813$, 95%CI 0.587 to 1.039, $p < 0.05$, $Q = 32.353$, $p < 0.05$

Motor Coordination: 5 studies, $N = 616$, $d = 0.917$, 95%CI 0.745 to 1.088, $p < 0.05$, $Q = 2.443$, $p = NS$

Complex Motor Sequencing: 2 studies, $N = 296$, $d = 0.607$, 95%CI 0.193 to 1.022, $p < 0.05$, $Q = 2.922$, $p = NS$

Sensory Integration: 5 studies, $N = 616$, $d = 0.492$, 95%CI 0.189 to 0.796, $p < 0.05$, $Q = 11.724$, $p < 0.01$

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>Consistent apart from total score and sensory integration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>Precise</td>
</tr>
<tr>
<td>Directness of results</td>
<td>Direct</td>
</tr>
</tbody>
</table>

Comparison 2

NSS scores in first-degree relatives of people with schizophrenia vs. controls.

Summary of evidence

Moderate to high quality evidence (some inconsistencies, precise, direct, large samples) shows medium to large effects of increased NSS scores, motor coordination and sensory integration, but not motor sequencing, in relatives of people with schizophrenia compared to controls.

<table>
<thead>
<tr>
<th>NSS scores</th>
</tr>
</thead>
</table>

Significant, medium to large effects of increased total NSS scores, motor sequencing and sensory integration in relatives of people with schizophrenia compared to controls;

Total NSS score: 11 studies, $N = 1443$, $d = 0.974$, 95%CI 0.553 to 1.394, $p < 0.05$, $Q = 119.04$, $p < 0.001$

Motor coordination: 7 studies, $N = 796$, $d = 0.364$, 95%CI 0.070 to 0.657, $p < 0.05$, $Q = 21.051$, $p < 0.01$

Sensory integration: 7 studies, $N = 796$, $d = 0.369$, 95%CI 0.207 to 0.530, $p < 0.05$, $Q = 6.742$, $p = NS$

No significant difference for complex motor sequencing:

3 studies, $N = 301$, $d = 0.143$, 95%CI -0.214 to 0.499, $p > 0.05$, $Q = 4.586$, $p = NS$

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>Consistent apart from total score and motor coordination</th>
</tr>
</thead>
</table>
Neurological soft signs

Precision in results | Precise
Directness of results | Direct

Dazzan P, Murray RM

Neurological soft signs in first-episode psychosis: a systematic review

British Journal of Psychiatry 2002; 43: s50-57

View review abstract online

<table>
<thead>
<tr>
<th>Comparison 1</th>
<th>NSS prevalence in people with first-episode psychosis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of evidence</td>
<td>Moderate to low quality evidence (large sample, direct, unable to assess consistency or precision) suggests NSS are present in people with a first episode of psychosis. Low quality evidence (one small study) is unclear about the temporal stability of NSS in first-episode psychosis.</td>
</tr>
</tbody>
</table>

NSS prevalence

Nine studies (N = 806) considered NSS prevalence in people experiencing first episode psychosis, 5 of the 9 studies used a healthy control group, 2 of the 9 used people deemed at high genetic risk of developing psychosis as a control group and the remaining 2 did not use a control group:

NSS prevalence rates in patients ranged from 20% to 97.1% across studies and was consistently higher than control groups.

Comparable NSS rates were observed in high-risk individuals, though in general, patients showed the highest prevalence rates, and controls the lowest rates.

One study reported on the temporal stability of NSS prevalence with a 5 year follow up, N = 28. At the first episode of psychosis, NSS prevalence was significantly higher than controls.

At follow up, the difference between patients and controls increased particularly for frontal, corticospinal and temporo-parietal functions.

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>No measure of consistency reported, appears consistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>No measure of precision reported</td>
</tr>
<tr>
<td>Directness of results</td>
<td>Direct</td>
</tr>
<tr>
<td>Comparison 2</td>
<td>NSS prevalence in people with first-episode psychosis and a family</td>
</tr>
</tbody>
</table>
Neurological soft signs

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>History of schizophrenia vs. people with first-episode psychosis and no family history of schizophrenia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSS prevalence</td>
<td>Low quality evidence (moderate sample size, direct, unable to assess consistency or precision) is unable to determine the differences in NSS between these groups.</td>
</tr>
</tbody>
</table>

Summary of evidence

NSS Prevalence

Three studies, N = 347, reported no difference in NSS prevalence between patients with a family history of schizophrenia and those without a family history of schizophrenia.

One study, N = 76, reported an association between family history and a specific laterality pattern in psychomotor performance.

One study, N = 54, reported an association between family history and NSS progression, such that patients with a positive family history showed significantly greater neurological deterioration at the 5 year follow up.

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>No measure of consistency reported, appears inconsistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>No measure of precision reported</td>
</tr>
<tr>
<td>Directness of results</td>
<td>Direct</td>
</tr>
</tbody>
</table>

NSS Prevalence

Two studies, N = 132, found no difference in NSS prevalence between medicated and unmedicated patients.

One study, N = 54, reported significantly higher rates of NSS in neuroleptic-naive patients compared to controls. This study also reported an increase in NSS in patients at a 5 year follow up that was more marked in untreated patients than patients on neuroleptic medication, and was particularly noted for corticospinal NSS.

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>No measure of consistency reported, appears inconsistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>No measure of precision reported</td>
</tr>
<tr>
<td>Directness of results</td>
<td>Direct comparison of NSS prevalence in first episode psychosis in the context of antipsychotic administration</td>
</tr>
</tbody>
</table>
Comparison 4

Association of demographic characteristics with NSS prevalence in people with first-episode psychosis.

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>Low quality evidence (small samples, mostly direct, unable to assess consistency or precision is unclear as to any associations between NSS prevalence and demographic characteristics)</th>
</tr>
</thead>
</table>

NSS prevalence

One study, N = 32, reported no association between NSS prevalence and age of patients.

Two studies, N = 103, reported some association between NSS prevalence and males, showing a significant increase in NSS prevalence at 5 year follow up.

Two studies, N = 125, reported some association between NSS prevalence and lower education.

One study, N = 137, reported some association between NSS prevalence and lower socio-occupational outcome.

Note that these associations are not reported as being significant (reporting unclear).

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>No measure of consistency reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>No measure of precision reported</td>
</tr>
<tr>
<td>Directness of results</td>
<td>Direct for all outcomes apart from education</td>
</tr>
</tbody>
</table>

Comparison 5

Association of NSS prevalence with brain structural abnormalities in people with first-episode psychosis.

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>Low quality evidence (one small study, direct, unable to assess consistency or precision) is unclear as to any association between NSS prevalence and structural abnormalities in the brain.</th>
</tr>
</thead>
</table>

NSS prevalence

One study, N = 69, used CT to investigate structural changes and reported an association between NSS prevalence and shorter brain length, smaller brain volume, smaller temporal horn volume, and wider Sylvian fissure.

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>No measure of consistency reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>No measure of precision reported</td>
</tr>
<tr>
<td>Directness of results</td>
<td>Direct</td>
</tr>
</tbody>
</table>

Comparison 6

Association of NSS prevalence and psychopathology in people with
Neurological soft signs

<table>
<thead>
<tr>
<th>Summary of evidence</th>
<th>Low quality evidence (small studies, inconsistent, direct, unable to assess precision) is unclear as to any association between NSS prevalence and psychopathology.</th>
</tr>
</thead>
</table>

NSS prevalence

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>No measure of consistency reported, appears inconsistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>No measure of precision reported</td>
</tr>
<tr>
<td>Directness of results</td>
<td>Direct</td>
</tr>
</tbody>
</table>

Neelam K, Garg D, Marshall M

A systematic review and meta-analysis of neurological soft signs in relatives of people with schizophrenia

BMC Psychiatry 2011; 11: 139

View review abstract online

<table>
<thead>
<tr>
<th>Comparison</th>
<th>NSS in people with schizophrenia vs. healthy controls and vs. first-degree relatives.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of evidence</td>
<td>Moderate to low quality evidence (imprecise, inconsistent, direct, large samples) suggests large effect sizes for increased levels of NSS in people with schizophrenia compared to healthy controls, and in first-degree relatives compared to healthy controls. Moderate quality evidence (precise, inconsistent, direct, large samples) suggests a large effect size for increased levels of NSS in people with schizophrenia compared to first-degree relatives.</td>
</tr>
<tr>
<td>NSS severity scores</td>
<td></td>
</tr>
</tbody>
</table>
A significant, large effect size shows increased levels of NSS in people with schizophrenia compared to healthy controls; 7 studies, N = 995, $d = 1.24$, 95%CI 0.59 to 1.89, $I^2 = 94.9$, $p < 0.001$

A significant, large effect size shows increased levels of NSS in first-degree relatives of people with schizophrenia compared to healthy controls; 7 studies, N = 1082, $d = 1.83$, 95%CI 1.28 to 2.38, $I^2 = 93.1$, $p < 0.001$

A significant, large effect size shows increased levels of NSS in people with schizophrenia compared to their first-degree relatives; 7 studies, N = 1040, $d = 0.92$, 95%CI 0.64 to 1.12, $I^2 = 74.6$, $p < 0.001$

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>Inconsistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>Imprecise for control comparisons, precise for comparison between schizophrenia and first-degree relatives</td>
</tr>
<tr>
<td>Directness</td>
<td>Direct</td>
</tr>
</tbody>
</table>

Ruiz-Veguilla M, Callado L, Ferrin M

Neurological soft signs in patients with psychosis and cannabis abuse: a systematic review and meta-analysis of paradox

Current Pharmaceutical Design 2012; 18: 5156-5164

View review abstract online

<table>
<thead>
<tr>
<th>Comparison</th>
<th>NSS in people with schizophrenia who abuse cannabis compared to people with schizophrenia who do not use cannabis.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of evidence</td>
<td>Low quality evidence (direct, inconsistent, unable to assess precision) is unable to determine differences in levels of NSS in people with schizophrenia who abuse cannabis compared to people with schizophrenia who do not use cannabis.</td>
</tr>
</tbody>
</table>

NSS severity scores
Neurological soft signs

A significant effect of increased levels of NSS in people with schizophrenia who do not use cannabis compared to those who do use cannabis.

4 studies, $N = 284$, $X^2 = 42,066$, $p < 0.001$, $I^2 = 55\%$, $p < 0.001$

Authors report that primary study quality is limited

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>Inconsistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>Unable to assess</td>
</tr>
<tr>
<td>Directness</td>
<td>Direct</td>
</tr>
</tbody>
</table>

Zhao Q, Li Z, Huang J, Yan C, Dazzan P, Pantelis C, Cheung EFC, Lui SSY, Chan RCK

Neurological soft signs are not “soft” in brain structure and functional networks: evidence from ALE meta-analysis

View review abstract online

Comparison
Localised brain regions associated with neurological soft signs in patients with schizophrenia.

Summary of evidence
Moderate quality evidence (direct, large sample, unable to assess precision or consistency) suggests that people with schizophrenia showed reduced activation of basal ganglia and inferior frontal cortex, and increased activation of superior temporal gyrus, that were associated with increased severity of neurological soft signs. They also showed reduced grey matter volume of the precentral and inferior frontal gyri and thalamus, and white matter volume of middle temporal and cerebellum.

NSS

15 functional MRI studies assessed correlates of neurological soft sign severity while performing motor inhibition tasks (go/no-go) in people with schizophrenia compared to controls.

Controls alone (9 studies)
NSS severity correlated with activation in:
Right inferior frontal gyrus (40 28 0)
Neurological soft signs

<table>
<thead>
<tr>
<th>Brain Region</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right middle temporal gyrus</td>
<td>(44 -58 22)</td>
</tr>
<tr>
<td>Left fusiform gyrus</td>
<td>(-38-64 8)</td>
</tr>
<tr>
<td>Right lingual gyrus</td>
<td>(8 -94 2)</td>
</tr>
<tr>
<td>Left parahippocampal gyrus</td>
<td>(-26 -8 -12)</td>
</tr>
<tr>
<td>Left middle frontal gyrus</td>
<td>(-40 12 44)</td>
</tr>
</tbody>
</table>

Patients alone (9 studies)

NSS severity correlated with activation in:
- Left insula: (-32 22 -2)
- Right superior temporal gyrus: (50 -54 18)
- Left middle temporal gyrus: (-40 -60 26)
- Right lentiform nucleus: (18 0 4)
 - Right insula: (36 16 6)
 - Right precuneus: (24 -70 42)

Controls > patients (12 studies)

NSS severity correlated with activation in:
- Left lentiform nucleus (putamen): (-24 10 -4)
- Right lentiform nucleus (putamen): (20 4 -4)
- Left lentiform nucleus (globus pallidus): (-22 -6 12)
 - Right inferior frontal gyrus: (40 22 4)
 - Left brainstem: (-2 -30 -10)

Patients > controls (7 studies)

NSS severity correlated with activation in:
- Left superior temporal gyrus: (-46 0 -10)

11 MRI studies assessed correlates of neurological soft sign severity with brain volume in people with schizophrenia compared to controls.

Controls > patients (6 studies)

NSS severity correlated with grey matter volume in:
- Left precentral gyrus: (-56 -6 40)
- Thalamus: (2 -12 14)
Neurological soft signs

<table>
<thead>
<tr>
<th>Left precentral gyrus (-46 -8 50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left inferior frontal gyrus (-54 20 20)</td>
</tr>
<tr>
<td>Right precentral gyrus (56 -4 40)</td>
</tr>
<tr>
<td>Left postcentral gyrus (-48 -26 52)</td>
</tr>
<tr>
<td>Left inferior parietal lobe (-50 -40 44)</td>
</tr>
</tbody>
</table>

NSS severity correlated with white matter volume in:
- Right middle temporal gyrus (44 -68 22)
- Cerebellar culmen (0 -56 -16)
- Left inferior frontal gyrus (-36 34 -6)

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>No measure of heterogeneity provided</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>No confidence intervals provided</td>
</tr>
<tr>
<td>Directness of results</td>
<td>Direct measures and comparison of functional activity</td>
</tr>
</tbody>
</table>

Explanation of acronyms

CI – confidence interval, CT = Computed Tomography, \(d = \) Cohen’s \(d \), \(I^2 \) = the percentage of the variability in effect estimates that is due to heterogeneity rather than sampling error (chance), \(N \) = number of participants, NSS = Neurological Soft Signs, \(p \) = statistical probability of obtaining that result (\(p < 0.05 \) generally regarded as significant), Q = test for heterogeneity, \(r \) = correlation coefficient, vs = versus, \(X^2 \) = Chi-square
Explanation of technical terms

* Bias has the potential to affect reviews of both RCT and observational studies. Forms of bias include: reporting bias – selective reporting of results, publication bias - trials that are not formally published tend to show less effect than published trials, further if there are statistically significant differences between groups in a trial, these trial results tend to get published before those of trials without significant differences; language bias – only including English language reports; funding bias - source of funding for the primary research with selective reporting of results within primary studies; outcome variable selection bias; database bias - including reports from some databases and not others; citation bias - preferential citation of authors. Trials can also be subject to bias when evaluators are not blind to treatment condition and selection bias of participants if trial samples are small11.

† Different effect measures are reported by different reviews.

Prevalence refers to how many existing cases there are at a particular point in time. Incidence refers to how many new cases there are per population in a specified time period. Incidence is usually reported as the number of new cases per 100,000 people per year. Alternatively some studies present the number of new cases that have accumulated over several years against a person-years denominator. This denominator is the sum of individual units of time that the persons in the population are at risk of becoming a case. It takes into account the size of the underlying population sample and its age structure over the duration of observation.

Weighted mean difference scores refer to mean differences between treatment and comparison groups after treatment (or occasionally pre to post treatment) and in a randomised trial there is an assumption that both groups are comparable on this measure prior to treatment. Standardised mean differences are divided by the pooled standard deviation (or the standard deviation of one group when groups are homogenous) that allows results from different scales to be combined and compared. Each study’s mean difference is then given a weighting depending on the size of the sample and the variability in the data. 0.2 represents a small effect, 0.5 a moderate effect, and 0.8 and over represents a large treatment effect11.

Reliability and validity refers to how accurate the instrument is. Sensitivity is the proportion of actual positives that are correctly identified (100% sensitivity = correct identification of all actual positives) and specificity is the proportion of negatives that are correctly identified (100% specificity = not identifying anyone as positive if they are truly not).

Odds ratio (OR) or relative risk (RR) refers to the probability of a reduction (< 1) or an increase (> 1) in a particular outcome in a treatment group, or a group exposed to a risk factor, relative to the comparison group. For example, a RR of 0.75 translates to a reduction in risk of an outcome of 25% relative to those not receiving the treatment or not exposed to the risk factor. Conversely, an RR of 1.25 translates to an increased risk of 25% relative to those not receiving treatment or not having been exposed to a risk factor. An RR or OR of 1.00 means there is no difference between groups. A medium effect is considered if RR > 2 or < 0.5 and a large effect if RR > 5 or < 0.212. lnOR stands for logarithmic OR where a lnOR of 0 shows no difference between groups. Hazard ratios
Neurological soft signs measure the effect of an explanatory variable on the hazard or risk of an event.

Correlation coefficients (eg, r) indicate the strength of association or relationship between variables. They are an indication of prediction, but do not confirm causality due to possible and often unforeseen confounding variables. An r of 0.10 represents a weak association, 0.25 a medium association and 0.40 and over represents a strong association. Unstandardised (b) regression coefficients indicate the average change in the dependent variable associated with a 1 unit change in the dependent variable, statistically controlling for the other independent variables. Standardised regression coefficients represent the change being in units of standard deviations to allow comparison across different scales.

‡ Inconsistency refers to differing estimates of effect across studies (i.e. heterogeneity or variability in results) that is not explained by subgroup analyses and therefore reduces confidence in the effect estimate. I² is the percentage of the variability in effect estimates that is due to heterogeneity rather than sampling error (chance) - 0% to 40%: heterogeneity might not be important, 30% to 60%: may represent moderate heterogeneity, 50% to 90%: may represent substantial heterogeneity and 75% to 100%: considerable heterogeneity. I² can be calculated from Q (chi-square) for the test of heterogeneity with the following formula;

\[I^2 = \left(\frac{Q-df}{Q} \right) \times 100\% \]

§ Imprecision refers to wide confidence intervals indicating a lack of confidence in the effect estimate. Based on GRADE recommendations, a result for continuous data (standardised mean differences, not weighted mean differences) is considered imprecise if the upper or lower confidence limit crosses an effect size of 0.5 in either direction, and for binary and correlation data, an effect size of 0.25. GRADE also recommends downgrading the evidence when sample size is smaller than 300 (for binary data) and 400 (for continuous data), although for some topics, these criteria should be relaxed13.

‖ Indirectness of comparison occurs when a comparison of intervention A versus B is not available but A was compared with C and B was compared with C that allows indirect comparisons of the magnitude of effect of A versus B. Indirectness of population, comparator and/or outcome can also occur when the available evidence regarding a particular population, intervention, comparator, or outcome is not available and is therefore inferred from available evidence. These inferred treatment effect sizes are of lower quality than those gained from head-to-head comparisons of A and B.
Neurological soft signs

References