Introduction

Diagnostic scales are widely used within clinical practice and research settings to ensure consistency of illness ratings. These scales have been extensively validated and provide a set of criteria that is used to define and diagnose an illness. Two key examples include the American Psychiatric Association’s Diagnostic and Statistical Manual (DSM) and the World Health Organisation’s International Classification of Diseases (ICD), which both provide a comprehensive definition of schizophrenia. Both the DSM and ICD criteria are regularly updated, and the most recent versions are the DSM-5 and the ICD-10.

For a DSM-5 diagnosis of schizophrenia, at least two symptoms need to have been present for at least six months, and for a significant portion of time over a one month period. Symptoms include delusions, hallucinations, disorganized speech and behaviour, catatonic behaviour, and negative symptoms such as diminished emotional expression, poverty of speech, and lack of purposeful action. At least one symptom of delusions, hallucinations, or disorganized speech needs to be present, and there also needs to be significant social or occupational dysfunction.

For an ICD-10 diagnosis of schizophrenia, either at least one symptom of delusions, hallucinations, or thought symptoms (thought echo, insertion, withdrawal, or broadcasting) needs to be present, or at least two symptoms of hallucinations, negative symptoms, catatonic behaviour, or incoherent/irrelevant speech needs to be present for most of the time for at least one month.

Method

We have included only systematic reviews (systematic literature search, detailed methodology with inclusion/exclusion criteria) published in full text, in English, from the year 2000 that report results separately for people with a diagnosis of schizophrenia, schizoaffective disorder, schizophreniform disorder or first episode schizophrenia. Reviews were identified by searching the databases MEDLINE, EMBASE, CINAHL, Current Contents, PsycINFO and the Cochrane library. Hand searching reference lists of identified reviews was also conducted. When multiple copies of reviews were found, only the most recent version was included. Reviews with pooled data are given priority for inclusion.

Review reporting assessment was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist that describes a preferred way to present a meta-analysis1. Reviews with less than 50% of items checked have been excluded from the library. The PRISMA flow diagram is a suggested way of providing information about studies included and excluded with reasons for exclusion. Where no flow diagram has been presented by individual reviews, but identified studies have been described in the text, reviews have been checked for this item. Note that early reviews may have been guided by less stringent reporting checklists than the PRISMA, and that some reviews may have been limited by journal guidelines.

Evidence was graded using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group approach where high quality evidence such as that gained from randomised controlled trials (RCT) may be downgraded to moderate or low if review and study quality is limited, if there is inconsistency in results, indirect comparisons, imprecise or sparse data and high probability of reporting bias. It may also be downgraded if risks associated with the intervention or other matter under review are high. Conversely, low quality evidence such as that gained from observational studies may be upgraded if effect sizes are large, there is a dose dependent response or if results are reasonably
Schizophrenia diagnosis

consistent, precise and direct with low associated risks (see end of table for an explanation of these terms)\(^2\). The resulting table represents an objective summary of the available evidence, although the conclusions are solely the opinion of staff of NeuRA (Neuroscience Research Australia).

Results

We found seven systematic reviews that met our inclusion criteria\(^3\)-\(^9\).

- Moderate to high quality evidence suggests the DSM-III, DSM-III-R or DSM-IV diagnostic criteria assigns significantly more males with psychosis to a schizophrenia diagnosis, rather than any other psychosis diagnosis, compared to the ICD-9, which shows no differences in gender distribution across diagnoses.

- Moderate to high quality evidence suggests a significant association of increased deficit schizophrenia (predominately negative symptoms) vs. non-deficit schizophrenia in males, a finding that was not moderated by sampling method, diagnosis criteria, or duration of illness.

- Moderate to low quality evidence suggests a schizophrenia diagnosis (both first-episode and chronic) is associated with reasonably high stability (>70% consistency) over time.

- Moderate to low quality evidence is unclear as to any latent/taxonic classes or subgroups underlying the schizophrenia population.

- Moderate to low quality evidence suggests moderate predictive value and kappa agreement for schizophrenia and schizophrenia spectrum diagnoses, good predictive value and kappa agreement for psychotic disorder, but poor predictive value and kappa agreement for schizoaffective disorder.
Beauchamp G, Gagnon A

Influence of diagnostic classification on gender ratio in schizophrenia

Socia] Psychiatry and Psychiatric Epidemiology 2004; 39: 1017–1022

View review abstract online

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Assessment of the gender distribution in schizophrenia vs. other psychoses, depending on the diagnostic tool used.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summary of evidence</td>
<td>Moderate to high quality evidence (consistent, imprecise, direct) suggests the DSM-III, DSM-III-R or DSM-IV diagnostic criteria assigns significantly more males with psychosis to a schizophrenia diagnosis, rather than any other psychosis diagnosis, compared to the ICD-9, which shows no differences in gender distribution across diagnoses.</td>
</tr>
</tbody>
</table>

Gender distribution

A male with psychosis is significantly more likely to obtain a diagnosis of schizophrenia than a female with psychosis.

- 12 studies, N = 827, OR† = 1.70, 95%CI 1.27 to 2.30, p = 0.0003, Qw = 11.1, p = 0.43
- However, this finding depends on the diagnostic tool used as when the ICD-9 and DSM were analysed separately, only the DSM criteria assigned significantly greater proportions of males to a schizophrenia diagnosis.
 - ICD-9: OR = 1.13, 95%CI 0.69 to 1.85
 - DSM: OR = 2.41, 95%CI 1.60 to 3.61
 - $Q_B = 5.7, p = 0.017$

<table>
<thead>
<tr>
<th>Consistency in results‡</th>
<th>Consistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results§</td>
<td>Imprecise</td>
</tr>
<tr>
<td>Directness of results‖</td>
<td>Direct</td>
</tr>
</tbody>
</table>

Chang WC, Chan SSM, Chung DWS
Diagnostic Stability of Functional Psychosis: a Systematic Review

Hong Kong Journal of Psychiatry 2009; 19: 30-41

View review abstract online

Comparison

| Assessment of the stability over time of schizophrenia diagnosis (the degree to which the diagnosis remains the same over subsequent clinical evaluations). Note: this review also reports on other psychoses, the results here are only reported for schizophrenia. |

Summary of evidence

| Moderate to low quality evidence (unable to assess consistency or precision, direct, large sample) suggests a schizophrenia diagnosis is associated with reasonably high stability over subsequent evaluations (>70% consistency). |

Diagnostic stability

12/14 studies reported over 70% consistency of a first-episode schizophrenia diagnosis, with 9/12 reporting over 90% consistency.

11/14 studies reported over 70% consistency of a schizophrenia diagnosis. The remaining 3 studies reported considerable shift between schizophrenia, bipolar and schizoaffective disorder diagnoses.

Consistency in results

Unable to assess

Precision in results

Unable to assess

Directness of results

Direct

Davis KAS, Sudlow CLM, Hotopf M

Can mental health diagnoses in administrative data be used for research? A systematic review of the accuracy of routinely collected diagnoses

BMC Psychiatry 2016; 16: 263

View review abstract online

Comparison

| Diagnostic integrity in administrative databases using ICD-10 vs. reference comparison (e.g. clinical chart or research diagnosis). |
Schizophrenia diagnosis

Summary of evidence

Moderate to low quality evidence (unable to assess consistency, appears imprecise, direct, large samples) suggests moderate predictive value and kappa agreement for schizophrenia and schizophrenia spectrum diagnoses, good predictive value and kappa agreement for psychotic disorder, but poor predictive value and kappa agreement for schizoaffective disorder.

Diagnostic integrity

Moderate predictive value and kappa agreement for schizophrenia and schizophrenia spectrum diagnoses, good predictive value and kappa agreement for psychotic disorder, but poor predictive value and kappa agreement for schizoaffective disorder;

"Schizophrenia": 18 studies, N = 5,016, median PPV ~75% (range 40-100%), Kappa ~0.45 (range 0-72%).

"Schizophrenia spectrum" (any non-affective psychosis, including schizophrenia): 13 studies, N = 2,662, median PPV ~85% (range 55-95%), Kappa ~0.45 (range 20-65%).

"Psychotic disorder": 4 studies, N = 1,561, median PPV ~90% (range 85-100%), Kappa ~0.80 (range 35-90%).

"Schizoaffective disorder": 5 studies, N = 823, median PPV ~50% (range 10-58%), Kappa ~0.38 (range 10-45%).

Consistency in results

Unable to assess; no measure of consistency is reported.

Precision in results

Appears imprecise

Directness of results

Direct

Linscott RJ, Allardyce J, van Os J

Seeking verisimilitude in a class: a systematic review of evidence that the criterial clinical symptoms of schizophrenia are taxonic.

View review abstract online

Comparison

Assessment of the latent structure of the schizophrenia diagnosis: if the symptoms of schizophrenia can be organised into discrete (latent) classes vs. a dimensional (continuum) scale.
Summary of evidence

Moderate to low quality evidence (unable to assess consistency or precision) is unclear as to any latent structure underlying the schizophrenia diagnosis.

Latent classes

There was no consistent evidence from 24 studies to support a two-, three-, four-, five-, or six-class interpretation of a latent class structure of schizophrenia symptoms (e.g. positive, negative, disorganisation, affective).

Fourteen analyses identified a two-class structure of schizophrenia; five analyses identified a three-class structure; six analyses identified a four-class structure; three analyses identified five classes; and two studies identified six latent classes.

Consistency in results
Not applicable

Precision in results
Not applicable

Directness of results
Direct

Menezes N, Milovan E

First-episode psychosis: a comparative review of diagnostic evolution and predictive variables in adolescents versus adults

Canadian Journal of Psychiatry 2000; 45: 710-716

Assessment of the diagnostic stability over time of first-episode psychosis in adolescents and adults (the degree to which the diagnosis remains the same over subsequent clinical evaluations).

Summary of evidence
Low quality evidence (unable to assess consistency or precision) is unable to ascertain any differences in stability of diagnosis of psychosis in adults compared to adolescents.

Diagnostic stability

Four studies reported higher rates of misdiagnosis in adolescents compared to adults, and an overall high rate of diagnostic shift for psychosis. Two studies report a comparative stability of the schizophrenia diagnosis.
Schizophrenia diagnosis

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Directness of results</td>
<td>Direct</td>
</tr>
</tbody>
</table>

Roy MA, Maziade M, Labbe A, Merette C

Male gender is associated with deficit schizophrenia: a meta-analysis

Schizophrenia Research 2001; 47(2-3): 141-147

[View review abstract online](#)

| Comparison | Association of male sex in deficit schizophrenia compared to non-deficit schizophrenia.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Note: deficit schizophrenia is a descriptive rather than diagnostic term, and reflects severe negative symptoms.</td>
</tr>
</tbody>
</table>

| Summary of evidence | Moderate to high quality evidence (consistent, imprecise, large sample size) suggests significant association of increased deficit schizophrenia in males. This effect was not moderated by sampling method, diagnosis criteria, or duration of illness. |

Association with sex

23 studies, N = 1765 consider the association of sex with deficit schizophrenia. The sample contained 28.7% of people with deficit schizophrenia. A large effect size suggests a significant association of increased number of males with deficit schizophrenia vs. non-deficit schizophrenia.

\[
\text{OR} = 1.75, \text{95}\%\text{CI} 1.39 \text{ to } 2.21, p = 0.000002, Q = 15.87, p = 0.82
\]

Subgroup analyses

No effect of sampling method was reported: no significant difference in effect size between convenience and systematic sampling, \(Q = 0.04, p = 0.86 \).

No effect of deficit assessment method was reported: no significant difference in effect size between three assessment methods:

- Schedule for the Deficit Syndrome (SDS) vs Proxy Deficit Syndrome (PDS), \(Q = 0.32, p = 0.57 \)
- SDS vs detailed review (DR), \(Q = 0.85, p = 0.36 \)
PDS vs. DR, Q = 0.85, p = 0.18

Unlike SDS and DR, the pooled OR for PDS alone did not yield a significant association with male gender, 3 studies, OR = 1.33, 95%CI 0.86 to 2.05.

No effect of diagnosis inclusion criteria: no significant difference between schizophrenia or schizoaffective disorder, Q = 0.49, p = 0.49.

Pooled OR for schizophrenia alone was significantly different to pooled OR including schizoaffective: OR = 1.68, 95%CI 1.29 to 2.19.

No effect of duration of illness: no significant difference between duration less than or greater than 10 years, Q = 1.17, p = 0.28.

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>Consistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>Imprecise</td>
</tr>
<tr>
<td>Directness of results</td>
<td>Direct</td>
</tr>
</tbody>
</table>

Roy MA, Merette C, Maziade M

Subtyping Schizophrenia According to Outcome or Severity: A Search for Homogeneous Subgroups

View review abstract online

Comparison

Validity of three potential schizophrenia diagnostic subdivisions: deficit vs. nondeficit; Kraepelinian vs. non-Kraepelinian and congenital vs. adult-onset

Summary of evidence

Low quality evidence (unable to assess consistency or precision) is unclear as to the reliability of defining schizophrenia in terms of deficit vs. non-deficit, Kraepelinian vs. non-Kraepelinian, or congenital vs. adult-onset

Schizophrenia subgroups

Deficit vs. non-deficit schizophrenia

Deficit schizophrenia is defined by the presence of at least two negative symptoms for at least 12 months. 31 studies have compared deficit and non-deficit schizophrenia.

People with deficit schizophrenia were reported to have more severe negative symptoms but less severe depressive symptoms. There was no difference between deficit and non-deficit in positive
Schizophrenia diagnosis

Symptom severity (hallucinations or delusions).

Deficit schizophrenia has been associated with poorer premorbid adjustment and social functioning, is more common in males, and has a high degree of stability over time.

Kraepelinian vs. non-Kraepelinian

Kraepelinian schizophrenia is defined by either continuous hospitalisation or complete dependence on care; lack of useful employment; and absence of complete remission. Six studies have compared Kraepelinian and non-Kraepelinian schizophrenia.

Kraepelinian schizophrenia has been associated with more severe negative symptoms and more severe disorganisation, and poorer social functioning, but no difference in positive symptoms (hallucination and delusions). Kraepelinian schizophrenia has also been associated with poorer treatment response.

Congenital vs. adult-onset

Congenital schizophrenia occurs before age 25, with poor premorbid adjustment, and a chronic course. Adult-onset schizophrenia is defined by abrupt onset at any age, without significant premorbid impairment, with acute psychotic episodes. 1 study assessed congenital vs. adult-onset schizophrenia.

There was preliminary evidence that congenital psychosis was associated with familial psychosis, and adult-onset schizophrenia associated with familial depression.

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>Not applicable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Directness of results</td>
<td>Direct</td>
</tr>
</tbody>
</table>
Explanation of acronyms

CI = Confidence Interval, DSM = American Psychiatric Association’s Diagnostic and Statistical Manual, I^2 = the percentage of the variability in effect estimates that is due to heterogeneity rather than sampling error (chance), ICD = World Health Organisation’s International Classification of Diseases, N = number of participants, OR = odds ratio, p = statistical probability of obtaining that result ($p < 0.05$ generally regarded as significant), PDS = Proxy Deficit Syndrome (measurement tool to assess Deficit schizophrenia), PPV = Positive Predictive Value; the percentage of patients with a positive test who actually have the disease, $Q = Q$ statistic for the test of heterogeneity, Q_w = test for within group differences (heterogeneity in study results within a group of studies – measure of study consistency), Q_B = test for between group differences (heterogeneity between groups of studies for an outcome of interest), SDS = Schedule for the Deficit Syndrome (measurement tool to assess Deficit schizophrenia), vs = versus.
Explanation of technical terms

* Bias has the potential to affect reviews of both RCT and observational studies. Forms of bias include: reporting bias – selective reporting of results; publication bias - trials that are not formally published tend to show less effect than published trials, further if there are statistically significant differences between groups in a trial, these trial results tend to get published before those of trials without significant differences; language bias – only including English language reports; funding bias - source of funding for the primary research with selective reporting of results within primary studies; outcome variable selection bias; database bias - including reports from some databases and not others; citation bias - preferential citation of authors. Trials can also be subject to bias when evaluators are not blind to treatment condition and selection bias of participants if trial samples are small.

† Different effect measures are reported by different reviews.

Prevalence refers to how many existing cases there are at a particular point in time. Incidence refers to how many new cases there are per population in a specified time period. Incidence is usually reported as the number of new cases per 100,000 people per year. Alternatively some studies present the number of new cases that have accumulated over several years against a person-years denominator. This denominator is the sum of individual units of time that the persons in the population are at risk of becoming a case. It takes into account the size of the underlying population sample and its age structure over the duration of observation.

Reliability and validity refers to how accurate the instrument is. Sensitivity is the proportion of actual positives that are correctly identified (100% sensitivity = correct identification of all actual positives) and specificity is the proportion of negatives that are correctly identified (100% specificity = not identifying anyone as positive if they are truly not).

Weighted mean difference scores refer to mean differences between treatment and comparison groups after treatment (or occasionally pre to post treatment) and in a randomised trial there is an assumption that both groups are comparable on this measure prior to treatment. Standardised mean differences are divided by the pooled standard deviation (or the standard deviation of one group when groups are homogenous) that allows results from different scales to be combined and compared. Each study’s mean difference is then given a weighting depending on the size of the sample and the variability in the data. 0.2 represents a small effect, 0.5 a moderate effect, and 0.8 and over represents a large effect.

Odds ratio (OR) or relative risk (RR) refers to the probability of a reduction (< 1) or an increase (> 1) in a particular outcome in a treatment group, or a group exposed to a risk factor, relative to the comparison group. For example, a RR of 0.75 translates to a reduction in risk of an outcome of 25% relative to those not receiving the treatment or not exposed to the risk factor. Conversely, a RR of 1.25 translates to an increased risk of 25% relative to those not receiving treatment or not having been exposed to a risk factor. A RR or OR of 1.00 means there is no difference between groups. A medium effect is considered if RR > 2 or < 0.5 and a large effect if RR > 5 or < 0.2. lnOR stands for logarithmic OR where a lnOR of 0 shows no difference between groups. Hazard ratios
measures the effect of an explanatory variable on the hazard or risk of an event.

Correlation coefficients (eg, r) indicate the strength of association or relationship between variables. They can provide an indirect indication of prediction, but do not confirm causality due to possible and often unforeseen confounding variables. An r of 0.10 represents a weak association, 0.25 a medium association and 0.40 and over represents a strong association. Unstandardised (b) regression coefficients indicate the average change in the dependent variable associated with a 1 unit change in the independent variable, statistically controlling for the other independent variables. Standardised regression coefficients represent the change being in units of standard deviations to allow comparison across different scales.

† Inconsistency refers to differing estimates of effect across studies (i.e. heterogeneity or variability in results) that is not explained by subgroup analyses and therefore reduces confidence in the effect estimate. I² is the percentage of the variability in effect estimates that is due to heterogeneity rather than sampling error (chance) - 0% to 40%: heterogeneity might not be important, 30% to 60%: may represent moderate heterogeneity, 50% to 90%: may represent considerable heterogeneity and over this is considerable heterogeneity. I² can be calculated from Q (chi-square) for the test of heterogeneity with the following formula:

\[
I^2 = \left(\frac{Q - df}{Q}\right) \times 100\%
\]

§ Imprecision refers to wide confidence intervals indicating a lack of confidence in the effect estimate. Based on GRADE recommendations, a result for GRADE continuous data (standardised mean differences) is considered imprecise if the upper or lower confidence limit crosses an effect size of 0.5 in either direction, and for binary and correlation data, an effect size of 0.25. GRADE also recommends downgrading the evidence when sample size is smaller than 300 (for binary data) and 400 (for continuous data), although for some topics, these criteria should be relaxed.

|| Indirectness of comparison occurs when a comparison of intervention A versus B is not available but A was compared with C and B was compared with C allowing indirect comparisons of the magnitude of effect of A versus B. Indirectness of population, comparator and/or outcome can also occur when the available evidence regarding a particular population, intervention, comparator, or outcome is not available and is therefore inferred from available evidence. These inferred treatment effect sizes are of lower quality than those gained from head-to-head comparisons of A and B.
References