Obstetric complications

Introduction
Obstetric complications are a broad class of deviations from a normal course of events experienced during pregnancy, labour, delivery and the early neonatal period. Studies have attempted to investigate whether any deviation or combination of deviations are related to the subsequent development of bipolar disorder. Teasing out possible effects of obstetric complications is not simple because many other, and often unknown, contributing factors are most probably involved.

Method
We have included only systematic reviews (systematic literature search, detailed methodology with inclusion/exclusion criteria) published in full text, in English, from the year 2010 that report results separately for people with a diagnosis of a bipolar disorder (bipolar I, II or cyclothymic disorder). Reviews were identified by searching the databases MEDLINE, EMBASE and PsycINFO. Hand searching reference lists of identified reviews was also conducted. When multiple copies of reviews were found assessing the same topic, only the most recent and comprehensive review was included.

Review reporting assessment was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist that describes a preferred way to present a meta-analysis. Reviews with less than 50% of items checked have been excluded from the library. The PRISMA flow diagram is a suggested way of providing information about studies included and excluded with reasons for exclusion. Where no flow diagram has been presented by individual reviews, but identified studies have been described in the text, reviews have been checked for this item. Note that early reviews may have been guided by less stringent reporting checklists than the PRISMA, and that some reviews may have been limited by journal guidelines.

Evidence was graded using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Working Group approach where high quality evidence such as that gained from randomised controlled trials (RCTs) may be downgraded to moderate or low if review and study quality is limited, if there is inconsistency in results, indirect comparisons, imprecise or sparse data and high probability of reporting bias. It may also be downgraded if risks associated with the intervention or other matter under review are high. Conversely, low quality evidence such as that gained from observational studies may be upgraded if effect sizes are large, there is a dose dependent response or if results are reasonably consistent, precise and direct with low associated risks (see end of table for an explanation of these terms). The resulting table represents an objective summary of the available evidence, although the conclusions are solely the opinion of staff of NeuRA (Neuroscience Research Australia).

Results
We found one systematic review that met our inclusion criteria.

• Moderate to low quality evidence suggests a large effect of increased risk of bipolar disorder with gestational age under 32 weeks, and a medium-sized effect with gestational age between 32 and 36 weeks. Low birth weight (<2500g), accompanied by gestational age under 37 weeks may also increase the risk in female, but not male offspring. A medium-sized effect was found for planned caesarean. There were no associations between bipolar disorder and emergency caesarean, gestational age, apgar score, birth presentation, birth type, uterine bleeding or induced labour.
Obstetric complications

Marangoni C, Hernandez M, Faedda GL

The role of environmental exposures as risk factors for bipolar disorder: A systematic review of longitudinal studies

Journal of Affective Disorders 2016; 193: 165-74

View review abstract online

Comparison	Association between obstetric complications and bipolar disorder.
Summary of evidence | Moderate to low quality evidence (large samples, direct, imprecise, appears inconsistent) suggests a large effect of increased risk of bipolar disorder with gestational age under 32 weeks, and a medium-sized effect with gestational age between 32 and 36 weeks. Low birth weight (<2500g), accompanied by gestational age under 37 weeks may also increase the risk in female, but not male offspring. A medium-sized effect was found for planned caesarean. There were no associations between bipolar disorder and emergency caesarean, gestational age, apgar score, birth presentation, birth type, uterine bleeding or induced labour.

Gestational age, birth weight and caesarean section

Large, significant effect of greater risk of bipolar disorder with gestational age < 32 weeks vs. > 37 weeks;

1 birth cohort study, N not reported, HR = 7.40, 95%CI 2.70 to 20.60, p < 0.05

Medium-sized, significant effect of greater risk of bipolar disorder with gestational age 32-36 weeks vs. > 37 weeks;

1 birth cohort study, N not reported, HR = 2.70, 95%CI 1.60 to 4.50, p < 0.05

Medium-sized, significant effect of greater risk of bipolar disorder with gestational age < 37 weeks in female offspring;

1 birth cohort study, N not reported, OR = 2.91, 95%CI 1.10 to 7.73, p ≤ 0.05

Medium-sized, significant effect of greater risk of bipolar disorder with gestational age < 37 weeks and low birth weight (<2500 g) in female offspring;

1 birth cohort study, N not reported, OR = 3.70, 95%CI 1.35 to 10.15, p ≤ 0.05

There were no significant associations with gestational age and birth weight in male offspring.
Obstetric complications

Medium-sized, significant effect of greater risk of bipolar disorder with planned caesarean;

1 birth cohort study, N not reported, OR = 2.51, 95%CI 1.32 to 4.78, p < 0.05

This study found no associations between bipolar disorder and emergency caesarean, gestational age, apgar score, birth presentation, birth type, uterine bleeding or induced labour.

<table>
<thead>
<tr>
<th>Consistency in results</th>
<th>Appears inconsistent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision in results</td>
<td>Imprecise</td>
</tr>
<tr>
<td>Directness of results</td>
<td>Direct</td>
</tr>
</tbody>
</table>

Explanation of acronyms

CI = Confidence Interval, HR = hazard ratio, N/A = not applicable, N = number of participants, OR = odds ratio (see below for interpretation of effect size), p = statistical probability of obtaining that result (p < 0.05 generally regarded as significant)
Obstetric complications

Explanation of technical terms

* Bias has the potential to affect reviews of both RCT and observational studies. Forms of bias include; reporting bias – selective reporting of results, publication bias - trials that are not formally published tend to show less effect than published trials, further if there are statistically significant differences between groups in a trial, these trial results tend to get published before those of trials without significant differences; language bias – only including English language reports; funding bias - source of funding for the primary research with selective reporting of results within primary studies; outcome variable selection bias; database bias - including reports from some databases and not others; citation bias - preferential citation of authors. Trials can also be subject to bias when evaluators are not blind to treatment condition and selection bias of participants if trial samples are small.

† Different effect measures are reported by different reviews.

Odds ratio (OR) or relative risk (RR) refers to the probability of a reduction (< 1) or an increase (> 1) in a particular outcome in a treatment group, or a group exposed to a risk factor, relative to the comparison group. For example, a RR of 0.75 translates to a reduction in risk of an outcome of 25% relative to those not receiving the treatment or not exposed to the risk factor. Conversely, an RR of 1.25 translates to an increased risk of 25% relative to those not receiving treatment or not having been exposed to a risk factor. An RR or OR of 1.00 means there is no difference between groups. A medium effect is considered if RR > 2 or < 0.5 and a large effect if RR > 5 or < 0.2. InOR stands for logarithmic OR where a InOR of 0 shows no difference between groups. Hazard ratios measure the effect of an explanatory variable on the hazard or risk of an event.

Weighted mean difference scores refer to mean differences between treatment and comparison groups after treatment (or occasionally pre to post treatment) and in a randomised trial there is an assumption that both groups are comparable on this measure prior to treatment. Standardised mean differences are divided by the pooled standard deviation (or the standard deviation of one group when groups are homogenous) that allows results from different scales to be combined and compared. Each study’s mean difference is then given a weighting depending on the size of the sample and the variability in the data. 0.2 represents a small effect, 0.5 a medium effect, and 0.8 and over represents a large treatment effect.

Prevalence refers to how many existing cases there are at a particular point in time. Incidence refers to how many new cases there are per population in a specified time period. Incidence is usually reported as the number of new cases per 100,000 people per year. Alternatively some studies present the number of new cases that have accumulated over several years against a person-years denominator. This denominator is the sum of individual units of time that the persons in the population are at risk of becoming a case. It takes into account the size of the underlying population sample and its age structure over the duration of observation.

Reliability and validity refers to how accurate the instrument is. Sensitivity is the proportion of actual positives that are correctly identified (100% sensitivity = correct identification of all actual positives) and specificity is the proportion of negatives that are correctly identified (100% specificity = not identifying anyone as positive if they are truly not).

Correlation coefficients (eg, r) indicate the strength of association or relationship between variables. They are an indication of
Obstetric complications

prediction, but do not confirm causality due to possible and often unforeseen confounding variables. An r of 0.10 represents a weak association, 0.25 a medium association and 0.40 and over represents a strong association. Unstandardised (b) regression coefficients indicate the average change in the dependent variable associated with a 1 unit change in the dependent variable, statistically controlling for the other independent variables. Standardised regression coefficients represent the change being in units of standard deviations to allow comparison across different scales.

‡ Inconsistency refers to differing estimates of treatment effect across studies (i.e. heterogeneity or variability in results) that is not explained by subgroup analyses and therefore reduces confidence in the effect estimate. I^2 is the percentage of the variability in effect estimates that is due to heterogeneity rather than sampling error (chance) - 0% to 40%: heterogeneity might not be important, 30% to 60%: may represent moderate heterogeneity, 50% to 90%: may represent substantial heterogeneity and 75% to 100%: considerable heterogeneity. I^2 can be calculated from Q (chi-square) for the test of heterogeneity with the following formula:

$$I^2 = \left(\frac{Q - df}{Q} \right) \times 100\%$$

§ Imprecision refers to wide confidence intervals indicating a lack of confidence in the effect estimate. Based on GRADE recommendations, a result for continuous data (standardised mean differences, not weighted mean differences) is considered imprecise if the upper or lower confidence limit crosses an effect size of 0.5 in either direction, and for binary and correlation data, an effect size of 0.25. GRADE also recommends downgrading the evidence when sample size is smaller than 300 (for binary data) and 400 (for continuous data), although for some topics, this criteria should be relaxed§.

¶ Indirectness of comparison occurs when a comparison of intervention A versus B is not available but A was compared with C and B was compared with C that allows indirect comparisons of the magnitude of effect of A versus B. Indirectness of population, comparator and or outcome can also occur when the available evidence regarding a particular population, intervention, comparator, or outcome is not available so is inferred from available evidence. These inferred treatment effect sizes are of lower quality than those gained from head-to-head comparisons of A and B.
Obstetric complications

References